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ABSTRACT

Comprehensive numerical solutions of the steady state incompressible viscous flow over a

three-dimensional backward-facing step up to Re = 800 are presented. The results are ob-

tained by the least-squares finite element method (LSFEM) which is based on the velocity-

pressure-vorticity formulation. The computed model is of the same size as that of Armaly's

experiment. Three dimensional phenomena are observed even at low Reynolds number. The

calculated values of the primary reattachment length are in good agreement with experi-

mental results.



1. INTRODUCTION

It is well known that for backward-facing step flows the reattachment length obtained by 2D

calculations cannot match with the experimental results for Re > 450. All the deviations

of two-dimensional simulations from experimental results are mainly due to the growing

effects of three-dimensionality as Reynolds number increases. In recent years, the devel-

opment of numerical schemes in fluid dynamics has been concentrated on the solution of

three-dimensional problems. Ku et al. 1 applied a pseudospectral matrix element method to

simulate the same three-dimensional problem only up to Re = 450 by employing the primi-

tive variable formulation. A simpli_ed marker-and-ceU finite-difference scheme is applied by

Ikohagi and co-workers 2 for the same 3D problem in curvilinear coordinates. However, no

comparisons have been made with either the experimental data or other simulation results,

and thus no primary conclusions can be really made.

In this paper, we report our resnlts for the 3D backward-facing step flow, and compare

with experimental results. We use the least-squares finite element method (LSFEM) s,4.s

For incompressible viscous flows, the LSFEM is based on the first-order velocity-pressure-

vorticity formulation. This method uses U ° elements to discretize the equations and mini-

mires the L_ norm of the equation residuals, and results in a symmetric and positive-definite

algebraic system which can be solved by simple matrix-free iterative methods. This method

leads to a minimization problem, and the choice of elements are thus free of the limita-

tion of the Ladyzhenskaya-Babuska-Brezzi(LBB) conditions ° The LSFEM is also free of

any parameters. Furthermore, all unknown variables are solved in a fully coupled manner,

and only simple physical boundary conditions are imposed, no artificial numerical boundary

conditions need be devised.

2. VELOCITY-PRESSURE-VORTICITY FORMULATION

The mathematical formulation and numerical scheme of the LSFEM for 3D Navier-Stokes

equations can be found in Jiang et al. s. For completeness, here we give a brief description of

the method. The steady-state incompressible Navier-Stokes equations can be recast as the

following nondimensional first-order quasi-linear velocity-pressure-vorticity formulation

V • fi = O, in_, (1)

1

a • va + vp + v × = f, (2)

- V × = 0, (3)

in which fi denotes the velocity, p the pressure, f the body force, Re the Reynolds number,

and f_ the flow domain. Here an independent vector, the vorticity _ = V x _, is introduced

to yield the first-order form such that the C O element can be used. As proved by Jiang et
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aL s, the following compatibility condition is required for three-dimensional cases to make

the system elliptic and will not be detailed here,

V-_ = O. (4)

The first-order elliptic system in Cartesian coordinates for three-dimensional problems can

be expressed as

Ou av Ow

o-_+ _ + o--;= o

Ou Ou Ou Op 1 . 0_ Oa_)

Ow Ow Ow Op 1 . Ow_ Ow_ )
y w?-; N _(N oy

Ov Ow
w_+ - o

Oz Oy

Ow Ou

w_ + &r Oz - 0

Ou Ov
w_+ - 0

Oy Oz

Oa_ 0% Ow_

o--2+ N + o---2= o

(5)

This first-order system has seven unknowns and eight equations. Jiang s proved that

the system is determined by introducing a dummy variable ¢ which satisfies the boundary

condition ¢ = 0 on the boundary. The gradient, V¢, is then added to the equation of

vorticity definition, and thus yields an elliptic and determined system with eight unknowns

and eight equations. Taking divergence of this vorticity equation will lead to A¢ = 0, thus

¢ = 0 in g_. Note that the introduction of a dummy variable ¢ is purely for the purpose of

proving the ellipticity of the system (5). In real calculation, no extra unknown is needed.

As shown in Jiang et aI. s, the 3D incompressible Navier-Stokes equations must have

three boundary conditions on each boundary. For the backward-facing step flow problem,

the following boundary conditions are considered :

(a) u = v = w = 0 on the wall;

(b) u = specified, v = w = 0 at the well-developed inflow;

(c) v = w = 0, p = constant (reference) at the outflow;

(d) w= = w_ = 0, w = 0 at the symmetric plane.



Note that no derivatives axe involved in the boundary conditions, only the simple physical

boundary conditions are imposed, and vorticity boundary conditions are used only at the

symmetric plane.

3. NUMERICAL SCHEME

First, the Newton's scheme is employed to linearize the quasi-linear system, thus we have,

for example,

0_ uo au .0U.o _ o

where ()° denotes the evaluation of the variable from previous iteration level.

linearized first-order equations can be written as a standard first-order system

(6)

Then the

Lu = f irt _ (7)

where L is a flrst-order partial differential operator :

Ou Ou Ou

Lu = A,N+ + Au iS)

The coefficient matrices in the general form of the first-order system for three-dimensional

problems are

1 0 0 0 0 0 0

"tt° 0 0 1 0 0 0
-1

0 uo 0 0 0 0

0 0 u° O 0 _ 0
0 0 0 0 0 0 0

0 0 1 0 0 0 0
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1
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(9)
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and the force and state variable vectors are

0
0 81_ 0 + +
o 8_ o o 8v o o 8v o+ +

0

0

0

0
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Z_
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Odz

c%

(aJz

(11)

The linearized first-order equations are solved by the LSFEM _ which results in a sym-

metric and positive-definite algebraic equation. A Jacobi preconditioned conjugate gradient

method is employed to solve the linear algebraic equations. In the conjugate gradient method,

the major computation is the multiplication of the global matrix with the global vector, and

this can be done in an element-by-element manner without forming the global matrix 7. To

further save the storage, the current algorithm does not even form the element matrices.

We directly calculate the product of the element matrix and the element vector, and the

Jacobi preconditioner can also be easily formed at the same time. In this way, we store only

several global vectors, and the derivatives of the shape functions at Ganssian points for each
element.

4. NUMERICAL RESULTS

The geometry and boundary conditions for the 3D model are shown in Figure 1. Due to

the symmetry, only half of the domain is considered. The step has a height S=4.9 mm, and

the inlet boundary is located 3.5 step heights upstream of this step. The channel downstream

of the step has a height of 10.1 mm that provides an expansion ratio of 1 : 1.9423, and the

half-span W = 90 mm that provides an aspect ratio for the test channel is 18 : 1.01. The

length L measured from the step to the end of the calculation domain is 45 step heights, which

is 3.11 times the maximum experimentally measured reattachment length of the primary

recirculation region for the Renolds numbers interested. The Reynolds number Re = UD/v

is based on the hydraulic diameter (D = 10.4ram) of the inlet channel, and the average

velocity is two-thirds of the maximum inlet velocity (normalized to unity) on the mid-span

plane. The various Reynolds numbers axe obtained by varying the kinematic viscosity v.

The velocity profiles obtained by solving the 2D Poisson's equation for a well-developed flow

are imposed as the inflow boundary conditions. The outflow boundary conditions are defined

such that a parallel flow and a constant pressure field exist.

The computation was performed on the mesh with 54400 nonuniform trilineax elements

(6 × 16 × 20 for inlet channel and 82 x 32 × 20 for the test channel). The smallest element

has the size of 0.1251, 0.05714 and 0.421 steps in z,y and z direction individually, while the
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largest element has the size of 3.0, 0.06938 and 1.68367 steps respectively. Figure 2 shows

the nonuniform mesh which has more elements close to the sidewall, the floor and the roof

in the test channel (see Figure 2). The solutions of the Stokes problem are taken as initial

guesses for the case of Re = 100, and the "converged" solutions are then used as initial

guesses for higher Reynolds numbers. The '_converged" solutions are based on those whose

L2 norm of the residuals less than 1.0 x 10 -4. The problem is solved using about 5M words

of the memory on a CRAY-YMP. Simulation of the three-dimensional model is performed

from Re = 100 to 800.

Spanwise flow structure

The velocity profiles at three spanwise locations for Re = 277 and 800 axe shown in

Figures 3 and 5. At .Re = 277, there is a slight change in the spanwise flow structure and

reattachment length. At Re = 800, the velocity profiles change significantly in spanwise

direction, and the reattachment length increases rapidly as moving toward the mid-plane.

Figures 4 and 6 depict the pressure contours at these two Reynolds numbers. Again, the

change in spanwise pressure distribution is more obvious as Reynolds number increases. Most

researchers predicted the reattachment length well up to Re <_ 450 by their 2D simulations,

and thought that the two-dimensional phenomena were maintained until Re _ 450. Numer-

ical results from the present method, however, show that the three-dimensionality are quite

significant even at low Reynolds number (e.g. Re=277).

Figure 7 illustrates the contours of vorticity w_ from z = 6.5 cm to the sidewall (z =

9.0 cm) at Re = 277. The dashed lines indicate the negative contour values. As shown in the

Figures, the vortex is stronger near the sidewall and has negligible influence on the region near

the mid-plane. The study of velocity vectors along the span at different downstream locations

provides better view of the three-dimensional phenomena, see Figure 8. The behaviour of the

inward flow toward the mid-span at the top roof and the outward flow toward the sidewall

(z/W = 1.0) at the channel floor contributes the three-dimensional phenomena. This tbxee-

dimensionality around the corner of the sidewall and the step can also be found at lower

Reynolds numbers but less significant.

A series of plots of cross-flow velocity vectors and contours of streamwise vorticity, w=, at

different downstream locations are shown in Figures 9 - 14. At Re = 389, there is a counter-

clockwise (negative) vortex on the corner of sidewall and channel floor. The cross-flow

velocity vectors shown in Figure 10 depict that there is a weaker clockwise (positive) vortex

close to the channel ceiling as flow moving downstream. The size of this positive vortex grows

in the streamwlse direction. Both vortexes become stronger as Reynolds number increases,

and persist further downstream with decreasing strength.

It is found that except in the inlet channel and in the region which is very far downstream

of the step, the three-dimensionality is significant at the downstream, in the vicinity of the

step. A study of spanwise flow structure provides further details. The spanwise distribution

of velocity profiles for streamwise velocity, _, at various ;_-locations and at a fixed y-position
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for Re = 648 are shown in Figure 15. At y = 7.5ram, all velocity profiles close to the

mid-plane are basically two-dimensional. The negative velocities in the figure indicate that

a second separation bubble occurs on the ceding, and its thickness grows as close to the

sidewall. At y -- 2.35 rnm, the z-component velocity, _, first increases rapidly in about the

thickness of boundary layer, then drops and resumes two-dimensional flow from z/W = 0.5

to the mid-plane (z/W = 0.0).

Figure 16 demonstrates the three-dimensionality by depicting the spanwise distribution

of the reattachment length for the primary separated-flow region. The numerical data of

spanwise reattachment length vs. various Reynolds numbers axe listed in Table 1. The

reattachment length is pretty much constant close to the mid-plane and decreases as moving

toward the sidewall. It is interesting to note that next to the sidewall, the reattachment

length increases rapidly. This phenomenon might be due to the interaction of primary

recirculation vortex and the corner vortex between the sidewall and floor as shown in, for

example, Figures 9 and 10. Figure 17 shows the computed reattachment length of the

primary recirculation zone, and compares with Armaly et a/.'s s experimental results. The

corresponding pointwise data obtained by the LSFEM and the experiment are given in Table

2. Since no tabular results are given, here the cited data from experiment are obtained by

optically digitizing Figure 14 in Armaly et al.'s paper.

Table 2 shows that in the Re range for which most simulations fail to predict the reattach-

ment length because of the three-dimensional phenomenon (Re = 450 --_ 800), the calculated

results by the LSFEM agree very well with the experimental results up to Re = 800.

As Reynolds number increases, an additional separated-flow region occurs near the chan-

nel ceiling. Figure 18 illustrates the spanwise detachment (z4/S) and reattachment (zs/6")

lines of this second eddy. The present results show that as Reynolds number increases,

this upper-wall eddy propagates toward the mid-plane with its length decreasing toward the

mid-plane. For example, as Reynolds number increases from 600 to 800, its length changes

from 17.5 to 22 step heights at z/W = 0.97708, and changes from 0.2 to 9.36 step heights

at z/W = 0.76. The experimentally observed upper-wall eddy at the mid-plane was not

observed in the current simulation. The spanwise variation of detachment and reattachment

length of the second eddy for various Reynolds numbers are given in Tables 3 and 4.

5. CONCLUSIONS

The steady-state three-dimensional backward-facing step problem is simulated using the

least-squares finite element method. The computed spanwise flow structure clearly depicts

the three-dimensionality. The prediction of primary reattachment length are in good agree-

ment with experimental results. Further developments are under way for solving time-

dependent problems.
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Table 1. Spanwise Distribution of Primary Reattachment Length (_i/S)

z/W Re=389 Re=500 Re=600 Re=648!Re=700 Re=800

0.97708

0.95243

0.92591

0.89739

0.86670

0.83370

0.79819

0.76000

0.71892

0.67472

0.62719

0.57605

0.52104

0.46187

0.39823

0.32976

0.25611

0.17689

0.09167

0.00000

4.7873 ! 4.7598

4.5224 4.5636

4.4467 4.4700

4.8376 4.7809

5.6686 5.5985

6.5050 6.6123

6.9495 7.2317

7.2835 7.6769

7.6081 8.2233

7.8156 8.8039

7.9101 9.3172

7.9336 9.6589

7.9291 9.7898

7.9188 9.8100

7.9056 9.7822

7.8933 9.7539

7.8839 9.7385

7.8780 9.7272

7.8748 9.7209

7.8740 9.7186

4.8502

4.5934

4.4290

4.6438

5.4196

6.5767

7.3644

7.8567

8.4387

9.1300

9.8642

10.5745

11.0796

11.3667

11.4917

11.5069

11.4735

11.4279

11.4000

11.3926

4.7166

4.5244

4.3849

4.5963

5.3551

6.5552

7.3418

7.7813

8.2980

8.9540

9.7360

10.6628

11.5275

12.1405

12.4468

12.4740

12.3895

12.3410

12.3408

12.3450

4.8231

4.5810

4.3936

4.5364

5.2089

6.4553

7.4005

I 7.8771

8.4029

9.0833

9.8871

10.8592

11.8613

12.7017

13.2472

13.4493

13.4234

13.3384

13.2772

13.2504

4.7052

4.5098

4.3248

4.4150

5.0171

6.2616

7.4756

7.9793

8.4371

8.9984

9.6695

10.6415

11.9200

13.3638

14.7292

15.5563

15.6984

15.4442

15.1296

15.0204

Table 2. Primary Reattachment Length (xi/S)

Re 389 500 600 648 700 800

LSFEM 7.874 9.719 11.393 12.345 13.253 15.020

Exp. 8.67 10.21 11.40 12.36 13.10 14.45
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Table 3. Detachment Length (z4/S) of Secondary Eddy at Upper Wall

z/W Re=389 Re=500 Re=600 Re=648 Re=700 Re=800

0.97708

0.95243

0.92591

0.89739

0.86670

0.83370

0.79819

0.76000

0.71892

0.67472

0.62719

0.57605

3.0831

4.2783

5.6721

7.8333

3.0024

4.1200

5.2026

6.1612

7.3190

!

2.8182

3.8681

4.9072

5.7713

6.6515

7.6409

9.0375

11.3750

2.8258

3.8440

4.7961

5.5829

6.3569

7.2013

8.2846

9.6379

10.7500

2.7367

3.7324

4.6904

5.5169

6.3083

7.1027

8.0603

9.3417

10.5547

11.9552

2.6701

3.6367

4.5429

5.3662

6.1724

6.9149

7.6900

8.7960

10.0307

11.0541

12.2672

14.1967

Table 4. Reatachment Length (zs/S) of Secondary Eddy at Upper Wall

z /W Re=389 Re=500 Re=600 Re=648 Re=700 Re=800

0.97708

0.95243

0.92591

0.89739

0.86670

0.83370

0.79819

0.76000

0.71892

0.67472

0.62719

0.57605

13.7775

13.3167

12.2407

9.3224

17.2220

17.0891

16.7674

15.3696

12.8966

20.3110

20.0150

19.6285

18.3668

16.5111

14.7052

13.3818

11.5714

21.1037

20.9073

20.9271

19.9921

17.8685

15.9967

14.9380

14.5169

14.1530

l

22.7215

22.5413

22.4388

121.4839

19.5302

17.7279

16.7597

16.1456

15.7025

14.8041

24.6619

24.2501

24.6982

24.0531

22.0990

19.8740

18.4722

18.1593

18.3837

18.5512

18.1801

16.7677

I0
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Figure 1. Backward-facing step geometry and boundary conditions.
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Figure 2. Nonuniform mesh ( xy plane and xz plane ).
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Figure 8. Velocity vectors for R_277 at x/S= (a) 6.25,
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